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A two-dimensional threshold surface of an excitable system is found as a set of threshold trajectories
calculated step by step in cross sections of the phase space. The method leads to a highly nonlinear boundary
value problem that can be solved numerically with the use of adaptive multiple shooting and continuation
methods. We demonstrate this technique by examining a model of a biochemical oscillator with two positive
feedbacks. Generalization to arbitrary dimension is discussed.
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INTRODUCTION

Excitability represents a basic mechanism for recognition
and adequate response to external stimuli. In general, excit-
able systems are nonlinear systems with a stable steady state
that are able to respond to a suitable small superthreshold
perturbation �signal� by a relatively large-amplitude transient
oscillation. The existence of the threshold makes it possible
to discern the signal from ordinary noise, while sufficient
amplification is a precondition for effective processing of the
response. Therefore excitability is frequently met when
studying living organisms on various levels of complexity,
from ecology �1� to physiology �2,3� and to biochemistry
�2–4�. There are also many examples of nonbiological sys-
tems that display excitability �5–8�.

In this work we focus on cases described by ordinary
differential equations. A basic qualitative explanation of ex-
citability and related notions applied to a general two-
variable dynamical system was presented in Ref. �9� where a
relationship between the threshold set and a middle part of
the nullcline for the autocatalytic variable is formulated.
Other approaches appeared, such as those employing iso-
chrones �10�. However, none of these studies treat the excit-
ability as a quantitative property, which exists only in a
bounded region of the parameter space. In addition, the study
of excitability has been so far restricted to two variables.

A well-studied case of excitability is associated with three
coexisting steady states, one of them being stable, where the
threshold is determined by a stable separatrix of the saddle
�11�. In the parameter space, such excitability is usually sup-
pressed in favor of bistability. A more frequent case is an
excitable system with a unique steady state, which is often
associated with a large parameter domain near a subcritical
Hopf bifurcation. For an outside observer the difference be-
tween both types is virtually undetectable but the threshold
in the latter case eludes a simple description. For two-
variable systems, a formulation of the threshold is found in
our previous work �12,13�. Here we present an extension to
three-variable systems where topologically new phenomena
can be expected. The method is applied to a well-known

model of two consecutive enzyme-catalyzed reactions with
positive feedback �14�.

THEORY

The strategy for calculations in a three-dimensional sys-
tem is based on the same principles as the previously thor-
oughly examined two-dimensional case �13�. Let us consider
a dynamical system described by a set of ordinary differen-
tial equations

dx

dt
= v�x�, x � Rn, �1�

which has a unique stable steady state xS satisfying condition

v�xS� = 0 . �2�

As implied by the qualitative definition of excitable dynam-
ics introduced above, the excitable system must, apart from
displaying the threshold set, be able to amplify any super-
threshold signal. We treat the threshold set T as a smooth
codimension one surface in the phase space made up of
negatively directed semiorbits of Eq. �1� �13�, which are lo-
cally strongly repelling so that response to any subthreshold
perturbation becomes rapidly damped, while response to any
superthreshold perturbation winds around T and thus ampli-
fies the signal. First, we need to define the size of the pertur-
bation and the response. By perturbation we understand an
instantaneous deviation from the steady state caused exter-
nally. For the amplitude of either the perturbation or the re-
sponse we have

A = �x − xS� =��
i=1

n

�xi − xSi�2. �3�

Upon the perturbation, x evolves in time according to Eq.
�1�, and so does A. For an excitable system there is a region
in the phase space where A increases with time because tra-
jectories locally depart from xS. The boundary of this region
corresponds to a condition for trajectories to be locally near-
est or most distant, which is a hypersurface of codimension
one satisfying*Electronic address: Igor.Schreiber@vscht.cz
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f = v�x��x − xS� = 0, �4�

where for the locally nearest point of an observed piece of
trajectory we set x=xL and for the most distant point we set
x=xR. Eq. �4� thus represents a unified formulation for both
the left and right boundary condition. By substituting xL or
xR satisfying Eq. �4� for x in Eq. �3� we obtain for a given
orbit a minimal size of the perturbation P, or a maximal
amplitude of the response R, respectively. It is convenient to
take a relative amplification

r =
R − P

P
�5�

as a characteristic of the given trajectory. In addition, we
need to evaluate a separation rate

dr

dP
=

grad r d0

grad P d0 , �6�

where grad=d /dxL, and d0 is a normalized vector tangent to
the hypersurface defined by Eq. �4� evaluated at xL. If n=2,
this hypersurface is simply a curve, which makes the calcu-
lations for two-variable systems viable �13�. For n�2, d0 is
not unique and additional constraints must be employed as
shown below.

To locate the threshold, we need to find orbits with the
highest possible separation rates. Equation �2� can be pre-
solved to yield xS. Taking into consideration that xR is the
end point of a solution of Eq. �1� with the initial point xL for
an unknown time T, Eq. �1� subject to boundary conditions
according to Eq. �4� represents a boundary value problem for
n+1 unknowns xL and T. This problem is well-defined only
for n=2, since Eq. �4� represents only two boundary condi-
tions. It can be solved by numerical continuation �15� com-
bined with shooting method. Due to extreme instability of
the orbits, adaptive multiple shooting is necessary �16�. We
obtain a family of trajectory segments from xL to xR param-
etrized by T. If we calculate, at each continuation step, the
characteristic amplification r, and the separation rate dr /dP,
we can determine a single trajectory representing the excita-
tion threshold according to the selection conditions

dr

dP
is max and r � 1. �7�

Now we show, how the above approach needs to be modi-
fied, when the dimension of the phase space n=3. While for
n=2 the threshold set was simply formed by a piece of a
single trajectory satisfying conditions �7�, in the three-
variable system the threshold set is a surface made up of
pieces of individual threshold trajectories. The basic idea is
to choose in the 3D phase space a convenient axis and a
plane containing this axis, which is rotated. If we restrict the
direction of perturbation to this plane, we can find one of the
trajectories making up the threshold set in the same fashion
as in the two-variable case. By repeating the calculations for
the plane sequentially rotated about the chosen axis, we can
obtain a family of trajectory pieces that jointly represent the
threshold surface. Thus Eqs. �1�–�7� remain valid, likewise,
the calculation of grad r and grad P, described in detail in

�13�, is unchanged. By restricting the perturbation to a plane,
the missing third boundary condition is given and, simulta-
neously, this also provides the so far incomplete determina-
tion of the normalized tangent vector d0.

Although the axis of rotation can in principle be chosen
arbitrarily, it is convenient to associate it with the autocata-
lytic variable. Let us assume that the autocatalytic species is
the kth variable and define a planar cross-section � contain-
ing a rotation axis that is parallel to the kth coordinate axis
and passes through xS. A normal equation for � employing
directional angles �i, � j, �k �17� leads to

�xLi − xSi� cos �i + �xLj − xSj� sin �i = 0, �8�

where the term for k vanishes and the two remaining direc-
tional angles are expressed in terms of �i, which represents a
parametrized rotation of �.

Now we can calculate the vector d0 occurring in Eq. �6� as
follows:

d0 grad f�xL� = 0, �d0� = 1, �9�

di
0 cos �i + dj

0 sin �i = 0. �10�

Equations �9� remain the same as in the two-variable case
�13�, while Eq. �10� restricts d0 to the cross-sectional plane �.

A starting point for numerical calculations requires Eq.
�2� to be solved for xS; an initial trajectory segment is found
by integrating Eq. �1� and searching for points xL and xR
satisfying Eq. �4�. In this way we also find T, and by using
Eq. �8� we calculate the rotation angle �i. Then the adaptive-
grid multiple shooting method combined with continuation is
employed �15,16�. By repeating continuations successively
with respect to T and �i, all the orbits belonging to a thresh-
old surface are calculated. If xS is a focus, then xL and xR
may not be unique and global extremes should be used. This
feature leads to a highly curved threshold T with several
loops around xS.

MODEL

As a test example we chose a model of two successive
enzyme reactions, each with a positive feedback, due to De-
croly and Goldbeter �14�. It is a prototype of a simple bio-
chemical oscillator providing a number of periodic regimes,
as well as chaos and bistability between a steady state and
periodic oscillations �14�. Excitability has not yet been ex-
amined. The original model is slightly recast to keep the
same scale for all three variables:

dx1

dt
= v − �1��x1,x2� , �11�

dx2

dt
= q1q2�1��x1,x2� − �2��x2,x3� , �12�

dx3

dt
= �2��x2,x3� − ksx3, �13�

where x1, x2, and x3 are dimensionless concentrations of a
substrate and two self-activating products, respectively, and
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��x1,x2� =
x1�1 + x1��1 + x2/q2�2

L1 + �1 + x1�2�1 + x2/q2�2 , �14�

��x1,x2� =
x2�1 + x3�2

L2 + �1 + x3�2 �15�

Control parameters v and ks represent the inlet rate of the
substrate and the rate of removal of the second product, re-
spectively. The values of other parameters taken from �14�
are q1=50, q2=0.02, �1=10 s−1, �2=10 s−1, L1=5	108, and
L2=100.

RESULTS

A bifurcation diagram in v and ks displays three separate
regions of a unique excitable stable steady state separated
from a common oscillatory region by Hopf bifurcation
curves �14�. Dynamics in two regions, where excitability is
quite distinct and well developed, are discussed below.

First we set v=6 s−1 and ks=0.2 s−1, which is well away
from the Hopf bifurcation curve on the stable steady state
side. A superthreshold perturbation of the steady state xS is
achieved by decreasing the concentration of the first product
x2 to about one third of its steady state value. An inhibitory
process depleting x2 and x3 is initiated, followed later by an
autocatalytic recovery of both species—this is an example of
inhibitory excitability �13�. We choose the plane of perturba-
tions satisfying Eqs. �4� and �8� to be parallel with the x3 axis
�i.e., k=3� and its rotation angle is measured with respect to
the x1 axis �i.e., �i=�1�. Figure 1 shows a set of response
trajectories to perturbations with varying size calculated for a
fixed value of �1=0.7156. The one that satisfies the threshold
condition �7� belongs to the threshold surface, which is then
obtained successively as �1 is varied. The surface is curved
along trajectories and nearly linear in the x1 direction indi-
cating that this case is a simple three-dimensional analog of
excitable dynamics found in two-variable systems.

Now we set the control parameters at v=4.8 s−1 and
ks=0.2 s−1 so that the system is shifted to a close vicinity of
the Hopf bifurcation. The steady state, which was originally
a node becomes a focus-node and the excitability becomes
stronger in the sense that superthreshold perturbations are
possible in virtually any direction, because the threshold set
forms a highly curved funnel that nearly surrounds the steady
state; see Fig. 2.

A different type of excitable behavior is found within the
second region of excitable steady states as shown in Fig. 3.
For parameter values v=0.8 s−1 and ks=5 s−1 the threshold
surface is marked by a sharp decrease in x3 immediately after
the perturbation followed by increase in x1, and its limited
extent is due to the inequality part of �7�. Separating proper-
ties of the threshold set become visible during the phase of
the increase in x1 as indicated by a subthreshold and a super-
threshold trajectory. Upon leaving the vicinity of the thresh-
old, the trajectories undergo a long oscillatory transient be-
fore settling onto the steady state. There are two oscillatory
modes, large-amplitude oscillations and small-amplitude
ones near the focal steady state. The superthreshold trajecto-
ries possess about twice as many large oscillatory loops as

FIG. 1. �Color online� Phase portrait showing superthreshold
�green/light� and subthreshold �blue/dark� trajectories for a particu-
lar cross section given by �1=0.7156, and a set of threshold trajec-
tories �thin red/medium-dark lines� for varying �1 forming the en-
tire threshold surface �ocher/light�; control parameters: v=6 s−1;
ks=0.2 s−1.

FIG. 2. �Color online� Threshold surface and two pairs of super-
threshold �green/light� and subthreshold �blue/dark� trajectories at
v=4.8 s−1 and ks=0.2 s−1.

FIG. 3. �Color online� Threshold surface, a superthreshold
�green/light� and a subthreshold �blue/dark� trajectory at
v=0.8 s−1 and ks=5 s−1.
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the subthreshold ones because of the strong separation. The
threshold set helps to characterize dynamics on a chaotic
attractor found in the adjacent parameter space across the
Hopf bifurcation at v=0.658 s−1 and ks=5 s−1. In Fig. 4 the
threshold surface T is calculated with respect to the now
unstable steady state. Any orbit on the chaotic attractor ap-
proaches T from one side and subsequently is repelled while
staying on the same side. In fact, the exponential divergence
on the attractor is entirely due to the presence of T. This
feature is related to T-repellers �10�. Moreover, random noise
will divert some orbits to the other side of T and cause ex-
pansion of the attractor.

DISCUSSION

The proposed method of determining threshold surfaces
in three-dimensional excitable dynamical systems is an ex-

tension of our earlier work on two-variable systems �13�. By
restricting the amplitude P of the perturbation to a suitably
chosen cross-sectional 2D plane we can find one threshold
trajectory. Rotation of this plane about a convenient axis pa-
rametrized by an angle � then allows for finding the entire
threshold surface. This approach can be formally extended to
dynamical systems with any dimension. For instance, in a
four-variable system, the threshold set is a three-dimensional
hypersurface. As before, we can choose a codimension one
hyperplane rotating about an axis parametrized by �. Within
this three-dimensional hyperplane, another axis defines rota-
tion of a two-dimensional plane parametrized by an angle 
.
Thus by fixing � and 
, a single threshold trajectory is found
so that the constraint �7� is satisfied and the entire threshold
set is obtained by successively sweeping both angles. How-
ever, the transition from two- to three-variable systems is the
most important step, because it represents a major change in
topology allowing for occurrence of phenomena associated
with excitability such as bursting and chaos.

The approach outlined above was tested for sensitivity to
the choice of the rotation axis of the cross section. The pre-
sented results were systematically done for two choices: the
axis parallel to x1 and the axis parallel to x3; we also per-
formed some tests with the axis parallel to x2. All these cal-
culations provided the same results. As with two-variable
systems �13�, our approach makes also possible studies of
parameter dependence of the threshold sets and their disap-
pearance causing the excitability to vanish.
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